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Using Mathematics and Engineering to Solve Problems 
in Secondary Level Biology

    

zone of proximal development (Vygotsky, 1978), just 
beyond what they already know but yet can accumulate 
in the process of addressing the problem. The contextual 
change involved is neither abrupt nor uncomfortably im-
mense, involving a move from the accustomed status of 
being students in order to try on the roles of consulting 
professionals and their clients. Such a change might be 
as simple as consciously leaving behind the role of bewil-
dered students.
 Instead, secondary level biology students are often 
handed a sequence of well-defined concepts (e.g., 
DNA, genes, chromosomes) associated with well-
defined relationships and processes (e.g., transcription, 
dominance, random assortment). No one can see or 
watch these components without microscopes, and they 
remain abstract throughout students’ association with 
them. Meanwhile, the same students encounter similarly 
well-defined abstractions in their mathematics courses, 
mathematics that could be applied to those biology 
processes (the way that engineers apply mathematics 
principles to resolve physics and chemistry problems) in 
order to demonstrate, explain, predict, and even influence 
those processes. Except that currently such mathematics 
is not applied, so those opportunities to move beyond 
abstraction are wasted.

Skills and Concepts in Biology 
Leveraged through Mathematics 
and Engineering
 The Partnership for 21st Century Skills groups learning 
and innovation skills under the mnemonic of four Cs: 
critical thinking/problem solving, communication, 
collaboration, and creativity/innovation (2011). When the 
scientific work at hand is “building and refining models 
of the world” (Lehrer, Schauble, & Lucas, 2008), each of 
these skills can be addressed in biology in the manner that 
engineers use when approaching a problem: first in the 
expression of a student’s initial model (e.g., of a biological 
process), then in the testing of that model, followed by 
the modification of that model until it is found to satisfice. 
Consistent and legible expression of a model framed as 
mathematical algorithm facilitates peer collaboration.
 It must be noted that such an engineering design 

approach need neither supplant nor conflate biological 
processes with mathematical processes. Rather, this 
approach introduces opportunities for both convergent 
(increasingly exclusive deduction) and divergent 
(increasingly inclusive induction) investigations and 
conclusions (Dym, Agogino, Eris, Frey, & Leifer, 2005) as 
information about a biological process is uncovered and 
subjected to scrutiny. Using mathematics as a vehicle for 
transfer from simple examples to complex projects also 
incorporates transfer across otherwise discrete domains 
(i.e., mathematics and biology), enabling expression 
in terms that can be shared among fellow students as 
researchers (Lobato, 2012).
 The positing of an engineering problem based on a 
biological process is not difficult. Consider Mendel’s Law 
of Segregation of Alleles in the case of an animal whose 
genes each have two alleles, and for which each allele 
may be either type A or type a. Each parent could then 
be one of these genotypes: AA, Aa, or aa. Say the male 
parent is Aa, and so is the female parent. When a gamete 
from the male parent and a gamete from the female par-
ent fuse as a zygote, there is no way to predict which of 
the two alleles from the male parent (hereinafter referred 
to by the term “dad”), A or a, is present because both are 
equally likely. This is also the case for the allele contributed 
by the female parent (or “mom”).
 However, when applying these principles as an en-
gineer might, one can predict the range of possible out-
comes for an offspring having those parents. Likewise, 
one can determine which of those outcomes (AA, Aa, or 
aa) is more likely to occur than others through the transla-
tion into a mathematical algorithm whereby A from mom 
and a from dad is seen to be the same as a from mom 
and A from dad, and thus there are likely to be twice as 
many Aa offspring as either AA or aa. One trick in apply-
ing mathematics to biology is to establish and maintain 
sensible mapping of mathematical expressions onto 
biological phenomena (e.g., irrational numbers might not 
mean much when dealing with alleles). And in this case, 
Mendel’s Law of Assortment of Alleles can be handled by 
extending the algorithm from the Law of Segregation of 
Alleles to multiple genes.

 There are strong classroom ties between mathematics 
and the sciences of physics and chemistry, but those 
ties seem weaker between mathematics and biology. 
Practicing biologists realize both that there are interesting 
mathematics problems in biology, and that viewing 
classroom biology in the context of another discipline could 
support students’ development of biology understanding 
(as mathematics does for physics and chemistry). The 
Biology Levers Out Of Mathematics study, implemented in 
public and private schools throughout a metropolitan area 
in the northeastern United States, tackles this challenge 
by introducing engineering as a bridge connecting the 
heretofore isolated silos of classroom mathematics and 
biology. This study presents engineering design methods 
for students to use in the posing of biology problems that 
mathematics then makes possible to resolve. Interviews 
with teachers and observations of students suggest that 
this approach makes the understanding of inheritance 
processes accessible to a wide range of the study’s 
participants.

Habits of Mind Could be Socialized 
in Biology Classrooms (But Aren’t)
 Secondary level biology does not offer students many 
opportunities to deal with real-world problems along the 
lines that actual biologists would address in their day-to-
day professional practice. This is somewhat negligent on 
the part of curriculum designers and textbook authors 
when these problems can be genuinely intriguing and 
therefore engaging to students. For example, breeding 
an endangered species in captivity takes on a whole new 
meaning when that species happens to be a tiger.
 But engagement can also arise from students being 
able to sympathize with the stakeholders in problems 
(Rosson & Carroll, 2009). Entries to complex problems will 
appear for students who recognize people in the problems 
just like they are, characters who resemble
members in students’ families or communities, doing 
things just as the students would, and facing a situation 
that biology expertise will help them resolve. Or, with the 
addition of some desirable difficulty, entries to problems 
can occur where the expertise required is in the students’ 
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The Structure of  

 Biology might not be the first science that comes 
to mind when mathematics-science or engineering-
science integration is mentioned, but there are plenty of 
opportunities to:
•	frame biology problems to require engineering 

investigations with multiple resolutions 
•	enhance students’ understanding of biological processes 

during the investigation, leading to a variety of 
expressions including mathematical ones as necessary 
to communicate findings 

•	modify the context of an investigation so students 
extend themselves beyond the classroom 

The Biology Levers Out Of Mathematics (BLOOM) study 
takes advantage of those opportunities that have until 
now lain dormant. To provide a model for others to build 
upon, we discuss in depth an example of the BLOOM 
modules that have been developed and implemented, 
as well as the effects on students that we have observed. 
The duration of a module can vary between two to four 
weeks of daily classroom 45-minute sessions, during 
which time some mathematical expression can be derived 
that describes a biological process in algebraic terms. This 
expression may be part of a more complex algorithm, 
but the variables should never be dissociated from the 
biological phenomena under consideration (i.e., no 
irrational alleles).
What students encounter in BLOOM are the sorts of 
situations that engineers face:
•	determining preferred conditions in comparison to 

existing conditions 
•	defining a problem from the gap between existing and 

preferred conditions 
•	analyzing the needs of the parties involved in that 

problem 
•	matching those needs with the resources available 
•	deriving a plan to get from the existing conditions to the 

preferred ones 

 For a BLOOM module, students perform a simplified 
version of engineering design in order to define and 
achieve a goal, using what they know or can find out from 
biology and mathematics content, perhaps inventing or 
modifying technologies as they need them. For example, 
we will discuss the unwieldy technology of a Punnett 
square in this implementation, and how mathematical 
reasoning supplants the Punnett square both in utility of 
calculation and fidelity of representation regarding the 
associated biological processes.
 In moving beyond the classroom context, students 
should report to a fictional client who presents them 
with a well-defined but ill-structured problem (Simon, 
1977), including plausible constraints such as a budget. 

Being ill-structured, the problem has the appearance of 
being wicked (Rittel & Webber, 1973), a departure from 
typical problem solving for most students, and an entry 
into an engineering design processes. “The wicked-
problems approach suggests that there is a fundamental 
indeterminacy in all but the most trivial design 
problems,” according to Buchanan (1992). And there are 
indeterminacies associated with not only the formulation 
of the problem to be resolved in the BLOOM module, but 
also with the nature of the solution space, and further 
with the process of getting from the formulated version of 
a problem to a resolution of that problem. 
 That noted, the problem is more well-defined than 
it at first appears, functioning less wickedly than what 
engineers potentially encounter and more tamely in the 
manner of a puzzle. There are several ways for the pieces 
of such a puzzle to be assembled, but only from a finite 
range of those pieces and with respect to established 
beginning and end states. 
 One opportunity provided by the problem’s ill-structure 
is for students to choose from a variety of lenses through 
which to view their client’s problem (different aspects are 
important to different stakeholders) and proceed to a level 
of complexity in their resolution which could challenge 
them but does not have to overwhelm them. Say that the 
client is looking for a technological resolution to his or her 
need. Depending on the perspective that a student takes, 
that technology could be any concept, method, material, 
or tool that satisficed the client’s need.
 Of course, the subject matter for our modules 
has to correlate with applicable standardized tests. 
Otherwise, there is little incentive for teachers to let 
us into their classrooms. In our case, we consult the 
existing Pennsylvania System of School Assessment 
tests for mathematics and science in 8th and11th grades 
(Pennsylvania Department of Education, 2012a), the 
soon-to-be-implemented Keystone Exams (Pennsylvania 
Department of Education, 2012b) that was to occur at the 
end of algebra and biology courses, and the impending 
Common Core State Standards Initiative (2011) and 
Next Generation Science Standards (2012), that will be 
factors with regard to what mathematics and biology 
(and engineering) topics that assessments will target 
in the near future. We also monitored topics, items, and 
results from the National Assessment of Educational 
Progress (Institute of Education Sciences, 2012), the Office 
for Economic Cooperation and Development’s Program 
for International Student Assessment (2012), and the 
National Research Council’s Framework for K-12 Science 
Education (2012).
 To summarize the ongoing iteration as a research 
design that informs the development of a BLOOM module, 
we had to:
•	identify topics of interest common to most biology 

curricula and standardized testing content (e.g., 
inheritance or evolution). 

•	identify processes treated within those topics that could 
be described mathematically (e.g., probabilities of 
offspring genotypes or rates of change in allele ratios in 
a population). 

•	construct an experimental instructional module and 
associated materials that present students with a 
problem involving a biological process, the engineering 
of both a resolution to the problem and the plan 
to achieve that resolution, and the manner to find 
mathematical information that they will need to prove 
that their plan works. 

•	provide, as part of the module, opportunities for 
students to explicate their personal models of these 
processes in the company of their peers (Lesh, Hoover, 
Hole, Kelly, & Post, 2000) 

and to develop mathematical expressions for the 
processes by modifying their initial models with input 
from others, thereby performing an iterative process in 
order to address the goal.

•	as part of the module, describe those opportunities such 
that students would find them plausible to perform, 
such as buying, breeding, and selling small animals in 
order (Rosson & Carroll, 2009) to achieve the goal. 

•	develop and carry out professional development 
sessions for participating teachers to understand 
and familiarize themselves with the intended 
implementation of materials in the module (e.g., what 
sequence aspects of students’ models of the biological 
process will be sought in order for students to analyze 
and refine their models). 

•	administer pre-tests for attitudes of students regarding 
mathematics use in biology. 

•	once the module begins, perform daily observation of 
participating teachers implementing the module in 
their classrooms as well as daily interviews with those 
teachers at the end of each class session (as we did for 
all teachers in all implementations). 

•	assess attitudinal changes in students not only from 
pre-test to post-test, but also from interview and 
observational data, and compare participating teachers’ 
assessments of students’ content knowledge with those 
of students not exposed to the experimental module.

•	analyze the successes and blind alleys in each version 
of the implementation in order to improve the module 
for presentation at the next professional development 
round with either new or repeat participating teachers. 

 Keeping that in mind, readers are urged to consider 
the in-depth curriculum description that follows as a 
model of how this kind of mathematical integration and 
engineering design crosscutting can happen in biology. In 
other words, we present a reflection on critical elements 
that supported our outcomes rather than a typical 
methods and results section.
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Curricular Results: Iteratively 
Prototyping Structure of a BLOOM 
Module 
 One module we’ve implemented (four iterations in 
a succession of rapid prototyping with from three to six 
teachers each time) has to do with the biological topics 
of genotypes, phenotypes, and inheritance. There were 
six different schools involved altogether, urban public and 
parochial. The ages of participants ranged from middle 
school to high school (14-18), and there were about 30 
students in each class for an approximate total N = 180 
during the last round before this report was prepared. All 
the courses addressed introductory life science, and no 
background was expected from students in the domain 
of biology, on the topic of inheritance, or on the topic of 
genes. The duration of the module’s implementation var-
ied from four to six weeks, depending on how often the 
classes met and how rapidly the teachers were comfort-
able with moving through the phases. 
 Typically, inheritance is taught with a focus on the 
narrative of meiosis, and expected ratios of offspring 
genotypes are calculated via the Punnett square. But 
the Punnett square is a clumsy process that rapidly 
submerges biological meaning in exponential complexity. 
If students were given another way to look at inheritance 
might it deepen their understanding of the process? If 
we scaffolded students quantifying the mechanisms that 
govern genotype and phenotype, would they learn the 
biology more deeply?
 In this novel module, we created opportunities 
to help students explore the underlying model of 
inheritance via multiple representations, including, verbal 
(e.g., generating rules for inheritance and justifying 
their claims), pictorial, and mathematical (e.g., tables, 
equations). The ill-structured well-defined premise 
involves having a zoo for a client, and this zoo wants 
some rare animals as a draw. The zoo’s animal search 
committee has approached professional breeders, but 
found their methods too unpredictable to risk funding. So 
now the zoo wants a specific plan for breeding animals, 
with the provision that the animals they get are not only 
rare, but also pure-bred so that the zoo can continue to 
breed similar offspring. And when we put students in 
the context of consulting experts in biology, we have a 
plausible reason for the zoo to approach the students with 
its problem and associated constraints.
 Thus we had framed a biology problem as a design 
challenge (see below) for students to pursue via an 
engineering investigation in order to provide the 
technology of a breeding plan to the zoo. What we 
intended as the vehicle for allowing multiple resolutions 
was the purposeful ambiguity of what makes an animal 
rare. This was one way for a variety of students to gain 
entry to the problem, each having a context of expertise 

Table 1.   Number of Students and Instructors in Statics of Engineering

and direction. For example, the breeders whom the zoo 
turned down had a definition of rarity based on the time 
in generations of geckos and effort required for them to 
find the cross of parents that produced an offspring with 
some aggregation of desirable traits. The systematicity of 
their methods was questionable, but they
could recognize and testify to an offspring’s rarity in an 
ordinal manner, ranking the results by what they think it 
would cost to accomplish each one.
 Then there was the association of rarity with the 
comparative expense of acquiring an existing gecko and 
its traits (such a scale of gecko prices was provided to 
students), earmarking certain of those traits as already 
being rare and anticipating novel aggregations of those 
traits to be even more so. Given six traits, we specified 
that the zoo would accept at minimum the expression of 
two, but we also left it open for those students wishing to 
attempt expressions of from three to all six.
 A third interpretation quantified rarity by mathemati-
cally determining ratios of allele permutations. When 
considering the range (i.e., kinds) of genotypes, one sees 
that origin of an allele has no bearing: there are only three 
possible permutations (AA, Aa, and aa). However, when 
considering the likely ratio of one genotype to another, 

one sees that the origin of an allele is crucial because Aa 
can result both from a combination of dad’s a and mom’s 
A and from a combination of dad’s A and mom’s a, making 
it twice as likely as either aa or AA. Clearly, an algorithm 
composed of mathematical expressions, distinctly de-
scribing the predictable contribution to inheritance from 
each parent’s set of alleles (both in range of resulting kinds 
and relative amount of each kind), can lead to a quantifi-
cation of rarity.

 Curriculum vision. We chose to background the 
process of meiosis (the steps that result in gametes), 
opting to foreground the variety of possible results, that is, 
what permutations of alleles can be passed on to offspring 
as genotypes, what combinations of alleles predict about 
the likelihood of a given genotype, and what the dominant 
and recessive relationships of those genotypes express 
as phenotypes and in what ratio. Although traditional 
instruction explores inheritance at the phenotype level 
in order to describe and infer what is going on at the 
genotype level, roughly 2/3 of the instructional time, or 
about four weeks out of a maximum of six, in our unit is 
focused exclusively at the genotype level in parents and 
offspring (Tasks C through F, “The Rules of Inheritance” 

Figure 1. Unit flow for curriculum vision, sequentially from Tasks A to H (note that at the commencement 
of the module’s implementation, students were not expected to have prior knowledge regarding any of 
the topics)
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Table 4.  Independent Samples t-Test of Course Grades in Statics between Class Type

and the “The Rules of Combinations” phases as indicated 
in Figure 1). We posit that this direct focus on genotype 
is not only more representative of modern science, but 
also presents a less demanding way to engage students 
in mathematical reasoning around the allele mechanisms, 
separated from the extraneous cognitive load and 
confusion with phenotype (Sweller, 2011).
 Drake and Sherin (2009) refer to curriculum as a 
vision of the particular kinds of learning and teaching 
practices described in the curriculum materials (p. 324). 
The flow in Figure 1 represents the module’s curriculum 
vision, composed of an initial exposure to the design 
challenge (say one class period or less than a week), 
four instructional phases (“The Mystery” phase as the 
remainder of the first week, “The Rules of Inheritance” 
and the “Rules of Combination” phases as a little under 
four weeks total, “The Rules of Expression” phase as the 
remainder of the fifth week and the beginning of the 
sixth, and the final design challenge as the concluding 
week). Of course, teachers stretched or compressed their 
implementations as they determined to best meet the 
needs of their students. 
 Mathematics implicitly resides in each phase and en-
gineering design is at the core of each phase, although not 
always the primary emphasis. This section will highlight 
the intent of the learning at each phase and the affor-
dances this flow offers with respect to the mathematics, 
biology and engineering practices.

 The design challenge. How do we know what 
offspring will look like, or how many will look a certain 
way? Can we predict this? What is rarity as it relates to 
inheritance? One of our goals is to move students from 
a qualitative explanation of inheritance to a quantitative 
model that can be used to make biologically grounded 
predictions about inheritance. So at the heart of 
what students are doing is integration of biology and 

mathematics in order to develop a scientific explanation 
as a model for the zoo of how they could breed any rare 
species. At each stage, students question how the new 
information they encounter informs the design choices 
they make.
 Phase 1: A discrepant event where like × like = 
unlike. Motivated by their own need to know, students 
are presented with two contrasting cases. On the surface, 
these two cases should apparently produce the same 
results, but they do not. Two identical looking female 
normal geckos are each mated with the same blizzard 
male gecko. Students are asked to predict the outcome of 
the two matings (i.e., crosses), and are then shown that 
the actual results for one mating are different from that 
of the other. “How can the same looking parents produce 
different offspring?” arises as the question of interest.
 Students believe genetics is unpredictable or have the 
idea that a parent can give a lesser amount of a trait to 
an offspring. They also intuitively know that it all depends 
on the genes and that sometimes “genes hide” and appear 
in later generations. This gives us the entry to do a “deep 
dive” into the genes of the gecko. Rather than consider all 
the genes a gecko has we agree to look at one gene to see 
if we can make sense of how genes work. Maneuvering 
among scales is scaffolded by an organizational zoom (see 
Figure 2), highlighting the level being emphasized.

 Phase 2: Rules of inheritance: PCR, genes, alleles. 
Leaving the organism level of phenotype, we delve at the 
genotype level. Utilizing polymerase chain reaction (PCR, 
see representation in Figure 3), a technique that scientists 
use to see what is happening in an organism at the DNA 
level, students make sense of variant forms of a gene (its 
alleles). This provides evidence from which students infer 
rules that account for the parental and offspring “footprint” 
on the printout.
 This phase engages students in mechanistic think-
ing in that it addresses the idea that you can get only one 
“whole thing” from mom and “one whole thing” from dad 
(i.e., half of the genetic information an offspring has for 
a particular trait comes from mom and half comes from 
dad). This clarifies the conception that students have 
about a parent’s ability to pass a lesser or greater amount 
of a gene. By showing that parents pass on a whole set 
of alleles, and that half of what the offspring has comes 
from mom and the other half from dad, it highlights and 
clarifies that the whole is a fusion of equal contributions.
 Students do not use the canonical vocabulary at first. 
They describe what they observe as bands or lines and 
once they have conceptually accounted for the rules, they 
label what they see as alleles, or forms of a gene. Later, 
they will use models of the alleles to explore how those
behave. Additionally, the PCR being provided shows 
12 offspring instead of the 16 that the geckos can have 
(one of the design constraints). This requires the student 
to engage in proportional reasoning to decide what 
alleles the other offspring might inherit from the parents. 
They also can begin to quantify what percentage of the 
offspring has a particular genotype. 
 These kinds of open-ended instructional tasks give 
multiple entry points for students to begin to make sense 
of the PCR data as related to inheritance. But interpretation 
of PCR data is only one example of how students are 
encouraged to ground their observations in mathematical 
expressions, at first through a crude manipulation of 
materials that leads to a recognizable consistency of 
results, and then through increasingly compact and 
sophisticated representations (e.g., drawings, tables, 
and graphs) that lead to robust models of the biological 
processes under scrutiny. 

Phase 3: Rules of combination. High school-aged stu-
dents come to the class knowing that babies come from 

Figure 2. Organizational zoom highlights each level as it is entered

Figure 3. PCR printout example
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fertilization of mom’s egg with dad’s sperm. Phase 3 takes 
advantage of this knowledge and the understandings 
generated in Phase 1 and Phase 2, to explore the rela-
tionships between genes, alleles, sperm and eggs. Stay-
ing at the genotype level, students use manipulatives to 
model allele behaviors and use mathematical strategies 
to quantify the relationships between parental contribu-
tions and offspring possibilities. The manipulatives enable 
students to model inheritance for up to two genes, and 
include eggs, sperm, alleles, male and female geckos. And 
the simulations performed with the manipulatives are 
algorithmically grounded, “imitating the processes that 
change content as well as the content itself” (Moulton & 
Kosslyn, p. 1276), as opposed to Punnett squares that are 
simulative but not emulative.
 Although the module deals with both permutation 
and combination, and permutation is sufficient to 
describe allele assortment for an individual parent, there 
is more information to be derived from combinations 
involving both parents in a cross. Students are jig-
sawed in assignment to groups in the classroom, with 
each group examining one of the homozygous or 
heterozygous parental crosses for a one-gene system. 
Student groups then analyze the data across the different 
crosses, suggesting equations that might determine the 
total number of possible allele combinations C given a 
particular set of parental genotypes:
•	maybe C = # egg types × # sperm type              (1)
•	maybe C = # egg types + # sperm type              (2)
•	maybe C = # types of alleles in female × #               (3)
 types of allele in male  

 For an equation to be valid it must hold in all cases. 
While equations 1 and 3 work across all the cases, students 
see that equation 2 does not. They are able to see how the 
process for the allele mechanism is not an additive process 
because they are dealing with combinations. Using tree 
diagrams students are able to demonstrate convincingly 
for themselves that this is the case.
 As they test their mathematics models on larger gene 
systems, they also find out the equation 3 does not work 
and they refine their biological thinking about what is 
happening in the system to make offspring. It is not about 
alleles combining; it is about egg and sperm combining. 
Having the biological justification tied to the mathematical 
model supports more consistent understanding of the 
process of inheritance. 
 It was stated earlier that rarity could be described 
as a probability using combination rules. If we think of 
probability, P, as a ratio, then P = desired outcome/all 
possible outcomes. Students can use equation 1, which 
is tightly connected to the inheritance rules students 
derived, as a way to find the denominator for P.
 So now P = desired outcome/(# egg types × # sperm 
types) for each gene. The numerator is calculated in a 
similar manner to determine the frequency at which a 

particular genotype can be expected from the mating of 
parents (for which the genotypes are known), although 
this expectation need not be consistent with observation 
of actual ratios.

 Phase 4: Rules of expression. At this point in the 
unit, students recognize that they are still unable to solve 
their design challenge. There is still knowledge they have 
not reconciled for themselves at this point. While they are 
able to determine the number of possible genotypes an 
offspring might have and their theoretical ratios in a litter, 
they cannot predict what the gecko offspring will actu-
ally look like. This “wondering” guides the work students 
do in Phase 4 to connect the genotype knowledge back to 
the phenotype of the organism, to understand how allele 
behaviors affect expression in the offspring.
 Throughout the unit, students bring up dominance 
and recessiveness from their prior learning. However, they 
do not yet have any evidence to support their thinking 
due to our curricular choice to focus work at the genotype 
level and because allele behavior alone does not help stu-
dents determine the offspring’s appearance. During Phase 
4 we continue to analyze data at the genotype level by 
introducing another tool, the western blot, which (simi-
larly to PCR) provides information about the allele at the 
even finer grain of RNA through protein variants (example 
shown in Figure 4).
 This analysis provides students with evidence that 
requires them to think more carefully about dominance. 
Students are then confronted with another contrast case 
that pushes their thinking further. The key question re-
peated from Phase 1, “How can two sets of parents that 
look the same as each other produce offspring that look 
different?” drives this exploration. Looking at the crosses 
from three species of flowers (sweet peas, camellias, and 
snap dragons) for which the genetic data (PCR, western 
blot, and offspring genotype) all appear identical, one 
notices that the offspring for each cross looks different. 
Grappling with these pictures (which involve simple 
dominance, co-dominance and incomplete dominance) 
and the genetic information helps students reconcile both 
the relationships between genotype and phenotype and 
the concept of dominance with protein interactions. At 
this point, during the final design challenge, students take 
a summative pass at their presentation for the zoo.

 Summary of Module’s Critical Elements. There are 
three main ideas that we have maintained throughout 
the development and implementation of the module’s 
instructional materials. All of these contribute in turn 
to a student’s foundational confrontation with, and 
increasingly sophisticated grasp of, the biological 
processes of inheritance. 
 First, there is the genotypic data from cross-breeding 
that makes the patterns of inheritance more clear than 
inference from phenotypic data alone would allow. 
Neither data set alone is sufficient. Understanding 
inheritance necessitates access to both kinds of data and 
the ability to go back and forth between them until the 
connections become apparent.
 Then there are the mathematical models that 
make possible the iterative discussion and presentation 
of inheritance concepts, specifically the connections 
between genotypic and phenotypic data. Without the 
artifact of a mathematical expression on which to base a 
design conversation about whether or not inheritance can 
even be described in such a manner (and if so, then how), 
no sophistication of understanding can take place. 
 Finally, there is the vehicle that engages student 
attention, displays immediate relevance to student level 
of ability, engenders increasing confidence in relation 
to the sophistication of the models and representations 
being created, and provides satisfaction in being able to 
bring inheritance processes to bear on a project goal: the 
application of the design challenge to breeding (Keller, 
1987). For the students, biology moves from abstract 
process to concrete payoff: there is a genuine reason to 
learn this material, it helps them achieve some end. And 
it neither denigrates nor otherwise distracts from the 
purpose of learning about life sciences.

Learning Results: Qualitative Effects 
of Context Change on Student 
Participants
 In this section we rely on a compilation of data, 
especially with regard to what we observed firsthand 
about students in the classroom, as well as what 
teachers told us about how students were engaging 
with the materials. We present three case studies of 
what transformation change in students looks like, as 

Figure 4. Western blot printout example
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they move from difficult struggle to perceived success 
in this kind of curriculum context.  The point is to give a 
qualitative feel for what positive effects might look like, to 
illustrate the ways in which some students struggled and 
then transformed their stance towards biology and the 
role played by mathematical understandings of biological 
phenomena (a more quantitatively oriented discussion is 
pursued in the next section). 
 In the first week of implementation some students 
were frustrated to the point of “shutting down” because 
answers to their questions were not automatically 
forthcoming, unlike the usual manner of instruction to 
which they had become accustomed. Other students were 
intrigued by this sudden change, and still others were 
entirely unreadable because they feared to give opinions 
and be considered “wrong” as a consequence. As we 
present our insights, we will also distinguish among them 
and demonstrate their differences.
 Our first example concerns Alice (not her real name; 
no students’ actual names are used in this paper in 
order to protect their confidentiality). Initially one of the 
unreadable students, she did not speak up until the third 
task, and even then limited herself to simple declarative 
observations and conjectures about the polymerase chain 
reaction results, “Female One had two thin bars and 
Female Two had one thick bar on the bottom…maybe 
the thick and thin bar cancel each other out, like dominant 
and recessive…the thin bars are recessive.”
 While student groups were displaying their first charts 
regarding one-gene simulation and debating how to 
express the outcomes mathematically, Alice’s anxiety was 
visibly elevated, not only in the rising pitch of her voice 
and the stamping of her feet, but also in her attempts 
to rectify what she felt were inadequacies in her group’s 
display. She did this by moving among the other groups 
and acquiring bits and pieces from their charts that she 
copied (inappropriately) onto her group’s chart. “That 
sounds better than our answer,” she said as she added a 
Punnett square, looking for white-out in order to obscure 
the correct work her group had done originally. She then 
appended allele combinations (that were not possible, 
but had appeared on someone else’s list) to her group’s 
list, culminating in the modification of her equation “male 
× female = offspring” to be “1/2 male × 1/2 female = 
offspring,” because that is how someone else had written 
it. “This [poster] is so messy….yeah, that’s the right 
answer.”  
 Compare that with her interruption of the teacher 
after a two-gene simulation, when Alice produced the 
mathematical expression that the class was looking for, 
announcing, “It would be types of combination of egg 
times types of combination of sperm equals sixteen over 
here [pointing to a classmate’s chart]. I can explain it. It 
works with one gene, too.” Her teacher remarked in a post-
class interview that without using the BLOOM module, 
Alice “wouldn’t have come up with what she did and it 

will open up a lot of people’s eyes” (i.e., raising her status 
in the classroom and increasing her self-confidence, which 
was becoming apparent from her now daily participation 
in class discussions). Furthermore, when faced with 
another round of charts from other groups, Alice made the 
decision not to copy another group’s work “because they 
have different ones than ours,” having developed an ability 
to distinguish among responses. 
 Note that Alice was not entirely reliant on the Punnett 
square, and that she bypassed the traditional pons 
asinorum of the expansion to two genes. Furthermore, 
her expansion led her to generalize the expression.
 Our second example student, Ben, was worried at the 
beginning of the module. When the teacher commented 
to him that he looked stressed, Ben responded, “I don’t get 
it. How do you mate these things?” before moving on to 
other work out of frustration. At that time it seemed to 
him that female traits were somehow “more dominant” 
than male traits; even after the one-gene simulation, he 
was still conflating alleles with different gecko species, 
perhaps due to exposure to so much terminology in a 
short span. 
 With manipulable material in hand, though, Ben 
was altogether different. Having finished the two-
gene simulation, he was not merely able to discuss the 
relationship of alleles, genes, and gametes, he was 
enthusiastic about it. “I got this,” he claimed as he listed 
the four permutations of gametes for the parent that the 
teacher had posed to the class. When asked to follow up 
with the number of offspring combinations, he made a 
diagram connecting each of the four permutations for one 
parent with one each of the four for the other, for a total 
of four and apparently missing the point, until a classmate 
questioned why each male gamete could not go with 
every female gamete? Ben then replied, “Are you talking 
about total number of combinations or offsprings...
because you can have sixteen possibilities but only one 
sperm with one egg,” showing a command of the subject 
matter that had been lacking only days before. 
 Indeed, shortly after Alice’s derivation of the 
mathematical expression for the two-gene system, the 
teacher asked Ben to explain the expression to some other 
students who had been absent, which he then carried 
off with aplomb. In fact, Ben’s change in context was so 
dramatic that he intended to carry it further once the 
module had ended, asking the teacher where he could 
acquire a gecko. He wanted to set up his own breeding 
concern. 
 Both Ben and Alice’s epiphanies apparently arrived 
as the result of having multiple representations in front 
of them (in which the Punnett square was only one 
representation, and a minor one, at that). Note the key 
difference, however, being that Alice’s is at least in part 
attributable to her analysis of the materials synthesized 
by her classmates (a design conversation played out as 
an iterative group effort) while Ben’s relied more on brute 

forcing a breakthrough that required the collocation of the 
manipulables and both the genotypic and phenotypic 
data. 
 At the same time that the teacher noticed Ben “coming 
around,” in a post-class interview she also commented on 
Cora, our third example student, “In the beginning they 
were shutting down…and Cora, that’s her nature. She 
likes things the way they’ve always been.” Indeed, Cora 
had not participated much during the first part of the 
module, and at the start of class one day she started to 
weep to such an extent that the teacher was obliged to 
help her from the classroom. “She really struggles with 
things that are uncertain and not secure,” was the teacher’s 
comment.
 Cora kept trying, though, and when the class was 
reviewing the charts they were preparing to post about 
two-gene system combinations, Cora spoke up in her 
group. When another student asked about how many 
combinations they should get, she set him straight on 
how many he had found versus how many she had found. 
Later, she worked through a Punnett square that she had 
modified from a four-by-four grid in response to there 
being fewer combinations from homozygous parents. 
The discovery that she could change the square led her 
to interrogate how it could be made less complicated in 
order to serve a three-gene system. 
 First it occurred to her that a three-gene Punnett 
square was going to have 4 × 4 × 4 = 64 boxes to fill in, 
and that was something her group had not considered. 
When another student asked if they had made an 
accounting mistake, Cora was ready to take charge. “Yes, 
I’ll work on that,” was soon followed by, “There! I fixed 
everything,” an entirely reversed role from the student 
who had been led in tears from the class only a week or so 
before. 
 Again, Cora’s revelation shared very little with 
either Ben’s or Alice’s. In this case, she did rely on the 
Punnett square more than the other two, but only to the 
point where the nature of its expansion (and her case, 
contraction) emerged from its associated bookkeeping. 
Once she could predict the range of the results, what had 
seemed wickedly ambiguous before became an exercise 
in precision, with which she was more than able to cope. 

Learning Results: Quantitative 
Effects of Conceptual Change for 
Student Participants
 The work of Schuchardt and Schunn (in press) provides 
a quantitative assessment of successive BLOOM module 
implementations with regard to student conceptual 
understanding and problem solving skills, and we will 
turn to that briefly for this section. Specifically, we want 
to demonstrate that “…changing the use of mathematics 
from (teacher-presented) calculated procedures to 
(student-developed) modeled processes that embed 
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biological concepts within the mathematics…” does 
have measurable effects, being complementary to the 
examples reported for this study. It should be noted that 
Schuchardt and Schunn’s sample size far exceeds that for 
this study, giving generalizable inferences a statistical 
basis.
 In Figure 5 Schuchardt and Schunn compare the 
results of student testing on control and treatment 
groups with respect to the topics of genetic terminology, 
processes, and probability in inheritance (and in general 
across all three topics), the same as we are dealing with 
in this study. With the exception of terminology, for which 
scores were similar, the significant differences favoring 
beneficial results are readily apparent.

Teaching Results: Teachers and 
Their Implementations of a BLOOM 
Module
 Although we treat the sense-making required of our 
teachers more in depth in another forum (Cox, Reynolds, 
Schuchardt, & Schunn, in press), it is appropriate to include 
a glimpse of those insights here, as well. We present 
abbreviated accounts of two very different teachers with 
respect to their attitudes toward the module, and their 

approaches to implementation. It is worth noting that all 
the participants were similar in remembering their own 
secondary educational experience with biology as being 
devoid of mathematics.
 Deborah participated in several implementations 
of the module. Her familiarity with the changes that 
have accompanied the iterations has established a 
level of trust in the designer’s intent and the materials’ 
utility. Approaching retirement, she also has the most 
experience in the classroom of all the participants. For 
her, mathematics is a medium necessary for analysis and 
presentation of data, and there clearly is not enough of it 
in general biology today. She is dedicated to making that 
happen to the extent of experimenting with innovative 
materials, or, as she says, “A teacher has to be open to 
seeing differently or kids won’t look at [content] another 
way.” 
 She believes that more biochemistry and its 
accompanying mathematics is needed in the biology 
curriculum where she teaches. Likewise, any preparation 
for physiology studies must include mathematics because 
“everything for physiology has an equation.” 
 Edna, on the other hand, remains only tentatively in 
favor of the BLOOM module’s mathematical emphasis. She 
is unhappy with the ambiguity of topics that eluded reso-

lution, as in whether there were 
three or four different products of 
a monohybrid cross (genotypic AA, 
Aa, aa versus algebraic AA, Aa, aA, 
AA); she feels it produces unneces-
sary anxiety in the students when 
she makes them answer their own 
questions. For her, teaching biology 
is challenge enough without bring-
ing mathematics into the picture:

In the science classroom, hav-
ing to teach so much content in 
a short amount of time, I think 
trying to find a way to incorpo-
rate the math – on my own – is 
just a bigger challenge for me at 
this point. I’ve only been teaching 
for five years, so maybe I’m still 
trying to learn how to teach the 
science content?...This is probably 
my first year that I actually feel 
comfortable that I don’t have to 
keep developing things. Y’know, 
the things that I’ve already devel-
oped have been working. I’m just 
kind of tweaking things here and 
there. I might be able to incorpo-
rate math here or there in some-
thing in my tweaking for future 
use, but to start from scratch and 
develop a whole unit or a whole 
lesson that does incorporate 
the math? I’d probably say, no, I 
wouldn’t.

 One recurrent theme that all the participants focused 
on was their perception of emergent self-efficacy among 
the students. For Deborah, who embraced the BLOOM 
materials, this effect was accelerated by the module, but 
not entirely attributable to it. That is, she felt self-efficacy 
would appear anyway, albeit over a longer time. Edna was 
progressively convinced over a series of implementations 
that there was a change in kind rather than degree, that 
self-efficacy now occurred where none had before, but 
this was still not enough to convince her of her own self-
efficacy with regard to introducing mathematics on her 
own.

Conclusions
 As a professor of biology at Cambridge University, 
Reginald Punnett was in at the first stages of recogniz-
ing inheritance as a scientific process. Since early in the 
Twentieth Century, his eponymous square has provided 
an innovative device for keeping track of very simple al-
lele interactions, making that concept accessible to a 
wide audience of university academics. In the meantime, 

Figure 5. Comparative test scores for control group versus iSTEM (integrated STEM being the description of the BLOOM module) 
treatment group, NS >.1, *p <.05, ***p <.001.
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however, secondary level students of introductory biology 
have obtained calculational resources that supersede the 
Punnett square’s usefulness for anything beyond the most 
elementary  applications (not to mention obviating the 
wide spread confusion associated with merely expanding 
the square from one allele to two, as discussed in Moll & 
Allen, 1987, and Tolman, 1982).
 Revisiting the disputable utility of the Punnett square 
as an example of where introducing mathematics might 
promote secondary level students’ understanding of 
biological processes, we have presented here: 
•	an argument for the benefits from mathematics 

emphases and engineering design to students of 
biology

•	the typical structure of an instructional module with 
which we pursued these benefits, and a detailed 
example of such a module

•	some qualitative insights from the implementations we 
have made to date. 

 Because we find the general response from students 
and teachers to be positive, we intend to continue in the 
rapid-prototype development and implementation of this 
module, and similar ones on various biology topics, with 
the intent of purposefully disseminating the associated 
materials and methods. 
 In this particular module, mathematics augmented 
student understanding of the exponential complexity of 
allele combinations and, with students’ repeated effort,  
gave those students a way to deal with any number of 
alleles that Punnett squares and even manipulatives do 
not provide in a practical sense. Because the elements of 
the mathematical expression are strongly tied to the actual 
biological processes of inheritance there is an affordance 
for reinforcement of understanding these processes 
through multiple pictorial and graphic representations 
related to quantification. 
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